周培++罗强++姜春娣++陈佳泉++缪媚奈
[摘 要]通过对现有连铸结晶器振动形态检测方法进行对比分析,借助目前的计算机技术、无线传感器技术以及三维重构振动形态检测技术,研究出一种新型的连铸结晶器振动形态在线检测和控制系统。
[关键词]连铸结晶器;无线传感器技术;三维重构
中图分类号:TF341.6;TN929.5 文献标识码:A 文章编号:1009-914X(2016)03-0062-01
1 引言
目前,国内外采用了多种方法对板坯结晶器振动状况进行检测,如传统的手工检测方法、结晶器自带位移测量装置检测方法、位移传感器检测方法和加速度传感器检测方法等。我国结晶器振动检测大多是基于单点的检测和分析,只能获取结晶器的局部信息,不能准确反映出结晶器振动的真实情况。由于振动控制不精确或误差较大,容易在钢水凝固成铸坯的过程中,铸坯的表面不平整,造成产品的表面质量发生问题,直接影响产品的销售,并且容易造成“漏钢”事故。再者振动不精确或误差很大,通常使用过大的安全系数,使得整条流水线发挥不了正常的工作效率,影响钢坯质量。
因此,对振动装置的监测和控制势在必行。
2 主要内容
1)结晶器振动形态三维重构
结晶器振动形态重构的过程是将布置在结晶器上各传感器节点所采集的信息进行信息融合分析的过程。通过多个测点的信息综合分析,每个传感器节点都包含X、Y、Z三个方向的信号,得到结晶器振动的具体信息并能模拟出结晶器振动形态,重构流程如图1所示。
2)结晶器振动形态检测和控制系统总体设计
结晶器振动形态在线检测系统通过对振动平台的实时监测,获取结晶器的实际振动状态,并通过振动幅值、频率、相位和波形偏斜率这四个基本参数反映出结晶器的实际振动波形。然后再由工业控制计算机对这四个振动基本参数进行计算,得出负滑动时间、负滑动率等连铸过程中比较重要的振动工艺参数,并根据这些参数通过反馈执行机构作用于驱动振动平台的电机,由此形成在线检测和控制闭环。系统总体框图如图2所示。
结晶器振动形态在线检测和控制系统总体由两部分组成:下位机系统与上位机系统。下位机系统为具有自动调平功能的无线传感器,是以T1公司生产的MSP430F149作为主控芯片的系统,主要由传感器、信号调理模块、A/D转换模块、自动调平模块、MSP430单片机最小系统及其他外围模块等组成,主要实现平台的自动调平、数据采集及数据的发送。上位机系统为工业控制计算机,主要进行数据的接受,并负责对下位机系统发送相关指令及配置参数,承担数据的分析、处理及显示,同时利用反馈执行机构控制结晶器振动台驱动电机。
3)系统硬件设计
该系统的硬件部分主要包括传感器部分、信号调理电路、数据采集卡及工业控制计算机。该系统首先进行检测平台的自动调平,然后传感器采集到结晶器振动信号,通过信号调理模块调理后,再经A/D转换,并通过MSP430打包后将振动信号的相关数据传给工业控制计算机。数据终端接受传来的数据,经过数据分析、处理后在用户界面上进行结晶器振动状况的具体参数及曲线的描述,并通过数据的融合进行振动形态的三维重构,且能动态模拟并回放结晶器的振动过程,直观准确的显示结晶器的振动状况。该检测系统的硬件总体架构如图3所示。
各个模块具有各自不同的功能。电源模块用于将锂电池提供的源电压通过不同的电压转换芯片的处理,转换为相应的适用于各模块工作的电源;信号调理模块主要分为信号滤波处理模块和运放电路调理模块,前者用于将传感器采集振动信号过程中的干扰信号去除,使经过该模块滤波后的信号最相近于结晶器振动的真实情况,后者用于将滤波后的振动信号进行一定调理;单片机模块主要把处理后的信号再次预处理,通过集成ADC模块实现电压信号转换,同时进行与数据终端的交互;自动调平模块用于将检测的传感器平台调节至水平;外围电路用于单片机的复位、状态指示、数据传输等。
4)系统的软件设计
本系统的软件设计以MSP430单片机为控制核心,用来实现数据的采集、平台的自动调平和数据的发送等功能,而数据的分析、处理等功能则由工控机实现。
当需要进行现场结晶器振动状况检测时,将无线传感器安装在结晶器平台上,加速度传感器将采集到的原始结晶器振动信号转换成电信号输出,该输出信号首先进行信号滤波处理,滤除杂波和其他干扰信号,再经过运放调理模块进行信号调理,得到适合MSP430单片机
可以采集的振动信号,调理后的电信号通过MSP430单片机的外部采样通道进入到模数转换模块ADC进行转换。将进入的模拟电压信号转换成数字电信号后,将数据按一定的格式打包,传送给数据分析终端,利用数据分析终端的分析软件进行数据的分析、处理及显示等,同时通过反馈控制机构对结晶器驱动电机进行反馈控制。
本系统软件设计采用结构化程序设计方法,将待开发的软件系统划分为若干个互相独立的模块,每一个模块完成单纯而确定的功能。
3 小结
本文围绕连铸结晶器装置存在的问题,通过分析其各部分工艺参数的特点和要求,对结晶器振动形态进行三维重构,并利用传感器对多点振动形态进行了检测,结合无线传感技术和计算机技术,研制出基于无线传感器的连铸结晶器振动形态检测和控制系统,直观又准确的反应结晶器振动的真实情况。该系统易于实现,成本低,操作简单。
资助项目:国家大学生创新项目[连铸结晶器振动形态在线检测和控制系统的研究(201411488007)、基于Web和GPRS的智能家居远程监控系统的研发],浙江省教育厅科研(Y201329552),国内访问学者项目(FX2013197)。
参考文献
[1] 王建伟,胡晓路,陈鲲鹏,板坯连铸机结晶器改造技术的研究[J]革新与改造,2015.
[2] 李洁,周月明,王俊,电磁搅拌作用下板坯结晶器内金属液流动行为实验研究[J]上海金属,2014.36(1).
[3] 王琳松,罗文,傅连东,湛从昌,朱学彪,连铸机结晶器振动状态监测及故障诊断研究[J]机械工程师,2013.第一期.
[4] 方一鸣,李宫胤,李建雄,刘乐,伺服电机驱动连铸结晶器振动系统建模与分析[J]仪器仪表学报,2014.35(11).