浅析神经网络油气预测的原理及应用
   来源:中国科技博览     2021年04月08日 07:11

杨晓榕++李晨磊++殷一丹

[摘 要]本文论述了人工神经网络的基本原理,其中包括多层感知器及误差反传播方法的相关使用,本文结合某工区对三维地震资料进行了层位标定和构造解释后,在构造解释的基础上分别提取的地震属性,按其XY坐标重新进行网格化,应用Landmark软件提取地震层位属性,将所提地震属性合并为一个整体,然后将训练样本集提交给神经网络,让神经网络学会有油气和无油气的分类方法,最终得到神经网络油气预测成果图展示了含油气区域的有利范围。

[关键词]神经网络 多层感知器 层位标定 地震属性 油气预测

中图分类号:TE328 文献标识码:A 文章编号:1009-914X(2016)03-0025-01

1.人工神经网络的基本原理

目前人工神经网络有四十种左右,结构、性能各不相同,但无论差异如何,它们都是由大量简单的基本处理单元广泛连接而成的。这种基本处理单元称为神经元,也称为节点,它是生物神经元的模拟物。最简单的节点是所有输入的加权和,并通过一个非线性函数输出结果

决定一个神经网络性质的要素有三个,即神经元特性、网络结构、训练方法(或叫学习方法)。所谓训练方法是指网络作什么方法适应或学习自动地形成网络中各个节点之间相互连接的权系数及各个节点的阀值。由于这三个要素的不同形成了丰富多彩的各种网络。在该项目的研究中,使用的神经网络是多层感知器(Multilayer Perceptron)。

2.多层感知器

多层感知器是一种层状结构有前馈神经网络,它由输入层,输出层,一个或多个隐蔽层(hidden layer)组成,隐蔽层也称为中间层,每个节点只与邻层节点相连接,同一层间的节点不相连。一个三层感知器可产生任意复杂的判定区,多层感知器使用的激活函数是S型函数。按训练方法多层感知器属于监督学习型,训练方法多采用误差反传播算法,简称BP算法。

3.误差反传播算法

函数(costfunction)最小化,估价函数等于期望输出与网络实际输出差的平方和。只有对应当前输出所属类的那个输出节点的期望输出是1.0,其余所有输出节点期望输出是0.0。网络训练时,开始取一些小的随机数(计算机自动生成),以这些随机数作为网络内部各个节点之间连接的权系数和各个节点上的阈值的初始值,然后,输入所有训练样本数据,根据网络求得输出结果,计算实际输出与期望输出的差值,并按照一定的规则,不断地修改节点间的连接权系数和节点内部的阈值,反复这一过程,直至权值收敛,并使估价函数降至可接收值。研究指出,真正的梯度下降法要求采取无穷小步长,权值改变的比例常数是学习率,学习率越大,权值改变量越大,网络收敛速度越快,但学习率大会产生震荡。为了增大学习率而不导致振荡,可增加一个冲量项(momentum term)。

4.神经网络油气预测

本次研究对三维地震资料进行了层位标定和构造解释,在构造解释的基础上分别提取地震属性,按其XY坐标重新进行网格化,将所提地震属性合并为一个整体。

该工区面积为1272平方千米,测线号1977-4639,共2664线,样点数为1905242点。预测层位为孔二段(EK2)。根据所选样本射孔井段深度及其试油结论,落实该段的含油气井和干井。统计结果表明:

在EK2内选择45口 (g107x1、g108、g143、g146x1、g2209、g61、g63、g68、g87、g89、g95、g996、g998、g999、n18、n20、n21、n22x1、n24、n59、n63、n69、n70、n73、n89、n91、wu7、y23、z19、z23、z25、z28、z31、z32、z34、z45、z46、z48、z49、z50、z52、z87、z88、z89、zx58)含油气井;

应用神经网络进行油气预测,首先应用Landmark软件提取地震层位属性,其后的实现步骤为:

①将每个地震属性在工区范围内作归一化处理,在此基础上可获得每一个地震道对应的地震属性样本。

②根据试油结论、地质分层数据表、射孔井段、井口坐标和井斜数据制作各砂层组和各井在该砂层组内的含油气性数据表,以便生成供神经网络学习用的训练样本集。上述数据及地震解释层位数据的可靠性都将影响预测结果准确性。

③训练样本集构成的参考原则:选取部分井旁样本组成训练样本集,留一部分井作为检验井,考核预测结果的可靠性。具体做法是:以射孔井段处的井下坐标在地面上的投影为原点,在指定的搜索半径范围内和指定产油气井旁抽取若干个样本作为含油气样本子集;在产油气井周边选择部分无油气井、并在无油气井旁抽取若干个样本作为无油气样本子集;将这两个样本子集合并在一起,便生成了训练样本集。

④将训练样本集提交给神经网络,让神经网络学会有油气和无油气的分类方法,即计算神经网络节点间的权系数。

⑤对工区内逐个样本进行分类,从而得到油气预测平面分布图。

EK2训练样本集是由含油气样本和干样本两个子集构成,从45口产油气井旁各抽取1-2个样本(其中g998、n20、n70抽取了两个样本),组成48个含油气样本,又从c14、g129、z37等22口干井旁各抽取1-4个样本(其中c14、g136、g137、g139、g157、g158、g194、jia6、x6、x7、y11抽取了2个样本,g128、g9、g990、wu15、z37抽取了3个样本,wucan1抽取了4个样本)组成48个干井样本,该层训练样本集的样本总数为含油气样本和干样本之和(96)。生成的训练样本集供神经网学习,“学习成绩”可以用不在训练样本集中井的含油气性来评判,即EK2的训练样本集共用67口井,用余下123口井(其中35口井为含油气井,其余88口井为干井)的含油气性来评价预测结果的可靠性。得到了EK2的油气预测图及顶面构造(等值线)与该层的油气预测叠合图。训练样本集选用了45口含油气井和22口干井,其余123口井作为验证井,EK2油气预测成果图(图7-9)显示,除了少数油气井(如g120、w38)在油气预测含油气边界处外,其余33口井均得到很好的验证,表明预测结果具有较高的符合程度(即符合度为33/35*100%=94%)。

5.结论

本次研究对三维地震资料进行了层位标定和构造解释,神经网络对工区内逐个样本进行分类,从而得到油气预测平面分布图。从分析结果看出,EK2含油气的地方,其预测值大部分都落在0.5至1的范围内,油气预测成果图展示了含油气区域的有利范围。从此次研究上看来利用神经网络预测油气是可行的。

参考文献

[1] 林畅松,李思田,任建业,断陷湖盆层序地层研究和计算机模拟——以二连盆地乌里雅斯太断陷为例,地学前缘,1995,2(3):124-132

[2] 于兴河.碎屑岩系油气储层沉积学[M].北京:石油工业出版社,2008.

[3] 吴永平,付立新,杨池银,等.黄骅坳陷中生代构造演化对潜山油气成藏的影响[J].石油学报,2002,23(2):16-21.

样本 油气 文章