高速铁路建设中精密测量技术的应用探讨
   来源:中国科技博览     2021年08月12日 04:04

杨军

[摘 要]随着我国高速铁路建设进入高速发展期,对高速铁路的建设要求越来越高,其中精密测量的应用越来越重要,精密工程测量是工程测量的分支,是测绘科学在大型工程、高新技术工程和特种工程等精密工程建设中的应用。精密工程测量主要研究精密工程测量技术的理论和方法,突出“高精度”和“可靠性”,代表了工程测量的最新发展和先进技术。它是在传统测量技术的基础之上,通用高精密仪器进行测角、测边、测高差,进而得到的精密坐标。本论文通过介绍精密测量的特点和体系,然后介绍其在高速铁路中的应用,为铁路建设者提供一定的指导作用。

[关键词]高速铁路 精密测量 应用探讨

中图分类号:TF789 文献标识码:A 文章编号:1009-914X(2017)11-0058-01

一、引言

高速铁路以其输送能力大、速度快、安全性好、舒适方便等优点开始在我国进入了高速发展阶段。高速铁路设计时速高达200km/h~350km/h,运行目标是高安全性和高乘坐舒适性,任何一个小小的颠簸,都会给旅客列车带来严重的安全事故。因此,要求轨道结构必须具备高平顺度和高稳定性。而轨道具备高平顺性和高稳定性的条件,除轨道结构的合理外形尺寸、良好的材质和制造工艺外,轨道的高精度铺设是实现轨道初始高平顺性的保证。而这些必须依靠精密测量才能完成。

进入高铁时代的铁路测量,也随着高铁的要求发生了重大变革,由于高铁比普通铁路线路变得更直、曲线长度变得更长、隧道和桥梁的增加、轨道演变为无砟轨道测量、测量控制网的变化、沉降监控量测的高精度和持久性、测量工作时间的变化等等,给铁路建设维护中的精密工程测量带来很多新课题,测量的理论、方法、规范、仪器都需要革新和变化。

二、精密工程测量定义和特点

工程测量分为普通测量和精密测量,根据工程测量学的定义,精密工程测量主要是研究地球空间中具体几何实体的精密测量描绘和抽象几何实体的精密测量实现的理论、方法和技術。精密测量工作代表了现代测量工作的发展趋势,精度代表的范用很广泛.主要有相对精度和绝对精度之分。相对精度又分为两种,一种是一个观测量的精度与该观测量的比值,如果比值越小,那精度就越高,例如:边长的相对精度。精度的含义很广泛,随着技术的发展精度又在不断提高,只有确定精度范围和概念的时候才能在当下为精密测量下一个定义。那我们这就就采用一个普遍的定义,凡是采用一般的、通用的测量仪器和方法无法满足工程队测量或测设精度的要求时的测量.都可以叫做精密工程测量。因此,大型工程、特种工程不能与精密 程并列,但是,一些特种工程还是与精密测量有精密联系的。

三维工业测量、工程变形监测中有很多测量也属于精度测量,就精度而言,从工业的角度来看,在设备的安装 、检测和质量控制测量中,精度可能在计量级,如微米乃至纳米;在工程变形监测中,精度可以放在亚毫米级;在 程控制网建立中,精度可能在毫米级。一般隧道等横向贯穿的精度在厘米级,但其对精度测量的要求仍然很高,属于精密工程测量。精密工程测量的另一个特点是,它的可靠性要求也很高,包括:测量仪器的鉴定检核、测量标志的稳定 、测量方法的严密、测量方案的优选、观测量之间的相互检查控制,以及严格的数据处理和精确的测量监督等。精密工程测量按工程需要的精度可以分为:普通精密工程测量和特种精密工程测量。

三、高精度平面控制测量的精度标准

高速铁路工程测量的控制网,按施测阶段、施测目的及功能可分为勘测控制网、施工控制网、运营维护控制网。平面控制网应在框架控制网CP0基础上分CPⅠ、CPⅡ、CPⅢ三级布设。按逐级控制原则布设的平面控制网,其设计的主要技术要求应符合相关的规定。常用的CPⅢ平面控制网要求为测量等级为一级,相邻点的相对中误差为1,采用自由测站边角交会的测量方法。

四、高速铁路高程控制测量

高程控制测量以线路水准基点控制网为起算基准,系统采用1985 国家高程基准。当个别地段无1985 国家高程基准的水准点时,可引用其它高程系统或以独立高程起算。但在全线高程测量贯通后,应消除断高,换算成1985 国家高程基准。有困难时亦应换算成全线统一的高程系统。

CPⅢ高程控制网也称轨道控制网,主要为高速铁路轨道施工、运行期维护提供高程基准。应在线下工程竣工且沉降和变形评估通过后施测。CPⅢ高程控制点与CPⅢ平面控制点共点,测量通常安排在CPⅢ平面控制网观测完成后进行。

CPⅢ高程控制网采用“精密水准”方法测量,它是介于二等水准和三等水准测量精度的一个等级,专用于CPⅢ高程测量。施测前应对全线的二等线路水准基点进行复测,构网联测测区内所有复测合格的二等线路水准基点。

在具备充分准备的条件下按下列要求实测测量:

(1)CPⅢ高程控制网的首次测量与平差计算,应该独立地进行两次。所谓“独立地进行两次”是指两次测量和平差计算应该在完全不同的两个时间段内进行。

(2)CPⅢ高程控制网采用“精密水准”方法观测,按照“后-前-前-后”或“前-后-后-前”的顺序测量。宜使用DS1及以上精度的电子水准仪及因瓦尺进行测量。

(3)应附合于二等线路水准基点,与测区内二等线路水准基点的联测时,采用独立往返精密水准测量的方法进行,每两公里联测一个线路水准基点,每一区段应至少与三个水准基点进行联测,形成检核。

(4)CPⅢ点与 CPⅢ点之间的水准路线,应该采用“中视法”或“矩形法”的水准路线形式,以保证每相邻的4个 CPⅢ点之间都构成一个闭合环。

(5)CPIII控制点水准测量应对相邻4个CPⅢ点所构成的水准闭合环进行环闭合差检核,相邻CPⅢ点的水准环闭合差不得大于1mm。

(6)区段之间衔接时,前后区段独立平差重叠点高程差值应≤±3mm。满足该条件后,后一区段CPⅢ网平差,应采用本区段联测的线路水准基点及重叠段前一区段连续1~2 对CPⅢ点高程成果进行约束平差。相邻CPIII点高差中误差不应大于±0.5mm。

(7)CPⅢ高程传递测量

当桥面与地面间高差大于3m,线路水准基点高程直接传递到桥面CPⅢ控制点上困难时,应选择桥面与地面间高差较小的地方采用不量仪器高和棱镜高的中间设站三角高程测量法传递高程,且要求变换仪器高观测2次,每次要求手工观测4个测回。两组高差较差不应大于2mm,满足限差要求后,取两组高差平均值作为传递高差。

五、总结

高速铁路是我国的百年重大工程,是我国发展的必备基础设施,为了保证高速铁路的安全稳定实施和运营,必须有在施工过程中保证铁路按照设计图计划实施。在施工过程中建立的高精度CPⅢ控制网是常用的控制网,在实际操作过程中,必须按照规范进行建立控制网,才能保证施工项目的正常运行。

参考文献

[1] 卢建康.高速铁路精密工程测量技术体系的建立及特点.铁道标准设计,2010(z1): 70-73.

[2] 左广恒.高速铁路测量控制体系建设与常见问题分析.城市建设理论研究(电子版), 2012(10).

[3] 苏志华,周春柏,刘晚霞.工程测量中GPS控制测量平面与高程精度分析[J].测绘通报. 2012(03)

[4] 武汉市轨道交通4号线二期工程GPS控制网的建立及精度分析[J]. 孙伟,乔炜.测绘工程. 2011(06)

[5] 精密工程测量数据处理综合系统讲座 讲座二 COSA_CODAPS及在精密控制测量数据处理中的应用[J]. 张正禄,罗年学,郭际明,巢佰崇,梅文胜.测绘信息与工程. 2010(02)

测量 高程 文章